Respuesta :
perimiter=2L+2W
w=x
P=80
80=2L+2x
diviide by 2
40=L+x
40-L=x
40-x=L
the area is found by legnth times width
LW or Lx
for a maximum area, try to get the legnths of the sides the same
therefor
L=W=x for max area
40=x+x
40=2x
divide 2
20=x
max area =legnth times width=20^2=400
note: all squares are rectangles, but not all rectangles are squares
L=40-x
A=(40-x)(x)
max area=400 cm^2
w=x
P=80
80=2L+2x
diviide by 2
40=L+x
40-L=x
40-x=L
the area is found by legnth times width
LW or Lx
for a maximum area, try to get the legnths of the sides the same
therefor
L=W=x for max area
40=x+x
40=2x
divide 2
20=x
max area =legnth times width=20^2=400
note: all squares are rectangles, but not all rectangles are squares
L=40-x
A=(40-x)(x)
max area=400 cm^2
The maximum area will be "400 cm²"
Given:
Perimeter = 80 cm
then,
- [tex]2(l+x) = 80 \ cm[/tex]
Length,
- [tex]l = (40-x)cm[/tex]
Area,
- = [tex]lx[/tex]
= [tex](40-x)x \ cm^2[/tex]
For, Area to be maximum
→ [tex]\frac{dA}{dx} =0[/tex]
→ [tex]\frac{d}{dx} (40-x)(x)=0[/tex]
→ [tex]40-2x =0[/tex]
→ [tex]2x =40[/tex]
→ [tex]x = \frac{40}{2}[/tex]
→ [tex]= 20[/tex]
hence,
The maximum area,
= [tex](40-20)20[/tex]
= [tex]20\times 20[/tex]
= [tex]400 \ cm^2[/tex]
Learn more:
https://brainly.com/question/16213025