Algebra
Engus
Identifying the Vertex
Try it
The vertex form of a quadratic function is fx) = a(x-h2 + k. What is the vertex of each function? Match the
function rule with the coordinates of its vertex
f(x) = 5(x - 5)2 + 9
1 (-5, -6)
f(x) = 9(x - 5)2 + 6
(5.-9)
f(x) = 9(x + 5)2 - 6
f(x) = 6(x – 5) - 9
f(x) = 6(x + 9) - 5
Done

Respuesta :

Answer:

  • (5, 9)
  • (5, 6)
  • (-5,-6)
  • (5, -9)
  • (-9, -5)

Step-by-step explanation:

Compare the given functions to the vertex form. Match parts to find the values of h and k. The vertex is (h, k).

Vertex form: f(x) = a(x -h)^2 +k

__

f(x) = 5(x - 5)^2 + 9; h = 5, k = 9; vertex: (5, 9)

f(x) = 9(x - 5)^2 + 6; h = 5, k = 6; vertex: (5, 6)

f(x) = 9(x + 5)^2 - 6; h = -5, k = -6; vertex: (-5, -6)

f(x) = 6(x – 5)^2 - 9; h = 5, k = -9; vertex: (5, -9)

f(x) = 6(x + 9)^2 - 5; h = -9, k = -5; vertex: (-9, -5)