Answer:
a) Ra = 0.517 Ω
Rb = 0.032 Ω
Rc = 0.129 Ω
b) Ia = 5.8A
Ib = 93.75A
Ic = 23.2 A
Explanation:
a) The resistance is equal to:
Resistance for case a:
[tex]R_{a} =\frac{pL_{a} }{A_{a} } =\frac{p*4*L_{0} }{2L_{0}*L_{0} } =\frac{2p}{L_{0} }[/tex]
Where
p = 1.5x10⁻²Ωm
L0 = 5.8 cm = 0.058 m
[tex]R_{a} =\frac{2*1.5x10^{-2} }{0.058} =0.517ohm[/tex]
Resistance for case b:
[tex]R_{b} =\frac{pL_{b} }{A_{b} } =\frac{pL_{0}}{2L_{0}4L_{0} } =\frac{p}{8L_{0}} =\frac{1.5x10^{-2} }{8*0.058} =0.032ohm[/tex]
Resistance for case c:
[tex]R_{c} =\frac{pL_{c}}{A_{c} } =\frac{p2L_{0}}{L_{0}4L_{0}} =\frac{p}{2L_{0}} =\frac{1.5x10^{-2} }{2*0.058} =0.129ohm[/tex]
b) The current is equal to:
Current for case a:
[tex]I_{a} =\frac{V}{R_{a} } =\frac{3}{0.517} =5.8A[/tex]
Current for case b:
[tex]I_{b} =\frac{V}{R_{b} } =\frac{3}{0.032} =93.75A[/tex]
Current for case c:
[tex]I_{c} =\frac{V}{R_{c} } =\frac{3}{0.129} =23.2A[/tex]