You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(57,000)t + 18.3°) Determine Vout(t). Please express Vout(t) in the same format as Vin(t)

Respuesta :

Answer:

Output voltage equation is [tex]V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)[/tex]

Explanation:

Given:

dc gain [tex]A = 23.6[/tex] dB

Input signal [tex]V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)[/tex]

Now convert gain,

[tex]A = 10^{\frac{23.6}{20} } = 15.13[/tex]

DC gain at frequency [tex]f = 0[/tex] is given by,

  [tex]A = \frac{V_{out} }{V_{in} }[/tex]

[tex]V_{out} =AV_{in}[/tex]

[tex]V_{out} = 15.13 \times 0.18 \cos (2\pi (57000)t +18.3)[/tex]

At zero frequency above equation is written as,

[tex]V_{out} = 2.72 \times \cos 18.3[/tex]

[tex]V_{out} = 2.72[/tex]

Now we write output voltage as input voltage,

[tex]V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)[/tex]

Therefore, output voltage equation is [tex]V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)[/tex]