Answer:
[tex]F\approx 1.17551\times 10^{-8} N[/tex]
Explanation:
In order to find the force between the two electrons, we need to use Coulomb's law. In its scalar form, the law is given by:
[tex]F=k_c \frac{q_1*q_2}{r^2}[/tex]
Where:
[tex]k_c=Coulomb\hspace{3}constant\approx 9\times10^{9} \frac{Nm^2}{C^2} \\q_1\hspace{3}and\hspace{3}q_2=Magnitudes\hspace{3}of\hspace{3}the\hspace{3}charges\\r=Distance\hspace{3}between\hspace{3}the\hspace{3}charges[/tex]
The electric charge of an electron is a known constant given by:
[tex]q_e \approx -1.6 \times 10^{-19} C[/tex]
So:
[tex]q_1=q_2=q_e \approx -1.6 \times 10^{-19} C[/tex]
Therefore, replacing the data provided in the Coulomb's law equation:
[tex]F=(9\times 10^{9})\frac{(-1.6\times 10^{-19})*(-1.6\times 10^{-19})}{(1.4\times 10^{-10})^2} =1.175510204\times10^{-8} \approx 1.17551\times10^{-8}N[/tex]