Block A, with a mass of 10 kg, rests on a 35 incline. The coefficient of static friction is 0.40. An attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. What is the largest mass MB, attached to the dangling end, for which A remains at rest?

Respuesta :

Answer:

Mass of object B is 9 kg for which block A remains at rest.

Explanation:

Given:

Mass of the block A, [tex]m_1[/tex] = 10 kg

Co-efficient of friction, [tex]\mu _s[/tex] = 0.4

Angle of inclination, [tex]\theta[/tex] = 35°

Mass of block B is unknown.

Have a look to the FBD of the inclined surface along with the two masses and the friction forces and the component of downward weight W (i.e mg).

Let the mass of the block B is [tex]m_2[/tex] .

Forces acting on [tex]m_1[/tex] .

⇒ Net horizontal force,   [tex]T-(m_1gcos\theta + \mu_sN)=0[/tex] ...(i)

⇒ Net vertical force,       [tex]N=m_1gcos(\theta)[/tex]                  ...(ii)

  Plugging value of N from equation (ii) to (i).

  T (the force on the string) can be written as.

⇒ [tex]T=m_1gsin(\theta)+\mu_sm_1gcos(\theta)[/tex]

⇒ [tex]T=m_1g(sin\theta+\mu_scos\theta)[/tex]      ...equation (iii)

Net forces acting on [tex]m_2[/tex] .

⇒ [tex]T-m_2g=0[/tex]        

⇒ [tex]T=m_2g[/tex]                              ...equation (iv)

Equating (iv) and (iii) as both are string forces on the same pulley.

⇒ [tex]m_2g=m_1g(sin\theta+\mu_scos\theta)[/tex]

⇒ [tex]m_2=m_1(sin\theta+\mu_scos\theta)[/tex]

⇒ Plugging the values.

⇒ [tex]m_2=10[sin(35)+0.4cos(35)][/tex]

⇒ [tex]m_2=9[/tex] kg

And  [tex]m_2=m_B=9[/tex] kg

So,

The largest mass of  [tex]m_B[/tex], attached to the dangling end, for which [tex]m_1[/tex] remains at rest is of 9 kg.

Ver imagen jitushashi143