Answer:
a) 13.01 kw
b) 4.336 kw
c) 0.8875 kw
Explanation:
Given:
Heating rate [tex]Q_H[/tex] = 740 Btu/min
[tex]T_H[/tex] = 60°F = 293.15 K
[tex]T_L[/tex] = 32° = 273.15 K
Performance-Coeff. = 3.0
a)
Electrical-Resistance Heating
[tex]W_{elect}[/tex] = [tex]Q_H[/tex]
[tex]W_{elect}[/tex] = 740 x (60 min / 1hr) x (1 kw / 341 Btu/min)
[tex]W_{elect}[/tex] = 13.01 kw
b)
a Heat Pump
[tex]P_{HP}[/tex] = [tex]\frac{Q_{H}}{Performance-Coeff.}[/tex]
[tex]P_{HP}[/tex] = 13.01 kw / 3.0
[tex]P_{HP}[/tex] = 4.336 kw
c)
Performance coefficient of reversible Heat Pump
Since; [tex]Q_H[/tex] = 13.01 kw
and [tex](Performance-Coeff)_{R.HP} = \frac{T_H}{T_H - T_L}[/tex] ==> [tex]\frac{293.15}{293.15 - 273.15}[/tex] ==> 14.66
Performance-Coeff = [tex]Q_H[/tex] / [tex]W_{elect}[/tex]
∴ [tex](W_{elec})_{R.Heat Pump} = \frac{Q_H}{Perf. Coeff.}[/tex]
[tex](W_{elec})_{R.Heat Pump} = \frac{13.01}{14.66}[/tex]
[tex](W_{elec})_{R.Heat Pump}[/tex] = 0.8875 kw