Answer:
[tex]\mathbf{Margin\; of\; error} =[/tex] .0942816
Step-by-step explanation:
Given
Sample size n = 150
Sample proportion [tex]{\widehat{(p)}[/tex] = [tex]\frac{42}{150}[/tex] = 0.28
Confidence interval = [tex]\frac{99}{100}[/tex] = .99
[tex]Margin\; of\; error = z_{\frac{\alpha }{2}}\sqrt{\frac{{\widehat{(p)}}{(1 - \widehat{p})}}{n}}[/tex]
[tex]\alpha =[/tex] 1 - confidence interval = 1 - 0.99 = .01
[tex]margin\; of\; error = z_{\frac{.01 }{2}}\sqrt{\frac{(.28) (1 - 0.28)}{150}[/tex]
For 99[tex]\%[/tex] confidence interval
( Z = 2.576 )
[tex]margin\; of\; error = z_{.005 }}\sqrt{\frac{(.28) (1 - 0.28)}{150}[/tex]
[tex]margin\; of\; error = 2.576\times\sqrt{\frac{(.28) (1 - 0.28)}{150}[/tex]
= .0942816