contestada

Davisson and Germer performed their experiment with a nickel target for several electron bombarding energies. At what angles would they find diffraction maxima for 38 eV and 54 eV electrons?

Respuesta :

Answer:

The angle of diffraction are 67.75 deg and 53.57 deg.

Explanation:

Given:

Davisson and Germer  experiment with nickel target for electrons bombarding.

Voltages : [tex]38\ eV[/tex] and [tex]54\ eV[/tex]

We have to find the angles that is  [tex]\phi_3_8[/tex] and [tex]\phi_5_4[/tex] .

Concept:

  • Davison Germer experiment is based on de Broglie hypothesis where it says matter has both wave and particle nature.
  • When electrons get reflected from the surface of a metal target with an atomic spacing of [tex]D[/tex], they form diffraction patterns.
  • The positions of diffraction maxima are given by [tex]Dsin(\phi) = n\lambda[/tex] .
  • An atomic spacing is [tex]D = 0.215\ nm[/tex], when  the principal maximum corresponds to n=1
  • The wavelength is [tex]\lambda[/tex], and   [tex]\lambda =\frac{1.227 \sqrt{V} } {\sqrt{V_o}}\ nm[/tex] .

Solution:

Finding the wavelength at [tex]V_o=38\ eV[/tex] .

⇒ [tex]\lambda_3_8 =\frac{1.227 \sqrt{V} } {\sqrt{38V}}\ nm[/tex]

⇒ [tex]\lambda_3_8 =0.199[/tex] nm

    Plugging the values of wavelength.

⇒  [tex]sin(\phi)=\frac{\lambda}{D}[/tex]

⇒  [tex]\phi_3_8=sin^-1(\frac{0.199}{0.215} )[/tex]

⇒ [tex]\phi_3_8 =67.75[/tex] degrees.

Now

For for the electrons with energy [tex]54\ eV[/tex], [tex]V_0=54V[/tex] the wavelength is.

⇒ [tex]\lambda_5_4 =\frac{1.227 \sqrt{V} } {\sqrt{54V}} = 0.173[/tex] nm

And

⇒ [tex]\phi_5_4=sin^-1(\frac{0.173}{0.215} ) = 53.57[/tex] degrees.

So,

The angles of diffraction maxima are 67.75 deg and 53.57 deg.