Respuesta :
Answer: The margin of error = [tex]3\%[/tex]
Step-by-step explanation:
Given
Sample size (n) = 1000
Population proportion = 0.4
[tex]\alpha[/tex] = 1 - confidence level
= 1 - 0.95
= 0.05
[tex]margin\; of\; error = z_{\frac{\alpha }{2}}\sqrt{\frac{{\widehat{p}}{(1 -\widehat{p})}}{n}}[/tex]
[tex]margin\; of\; error = z_{\frac{0.05 }{2}\sqrt{\frac{{(0.4)}{(1 -0.4)}}{1000}}[/tex]
[tex]= z_{0.025}\sqrt{\frac{{(0.4)}{(0.6)}}{1000}}[/tex]
[tex]= 1.96\sqrt{\frac{{(0.4)}{(0.6)}}{1000}}[/tex]
= 0.03
The margin of error change to [tex]2.5\%[/tex] to [tex]3\%[/tex]
Answer:
Increase due to a higher confidence interval
Step-by-step explanation: