In a survey of 1,000 television viewers, 40% said they watch network news programs. For a 90% confidence level, the margin of error for this estimate is 2.5%. If we want to be 95% confident, how will the margin of error change

Respuesta :

Answer:   The margin of error = [tex]3\%[/tex]

Step-by-step explanation:

Given

Sample size (n) = 1000

Population proportion = 0.4

[tex]\alpha[/tex] = 1 - confidence level

  = 1 - 0.95

   = 0.05

[tex]margin\; of\; error = z_{\frac{\alpha }{2}}\sqrt{\frac{{\widehat{p}}{(1 -\widehat{p})}}{n}}[/tex]

[tex]margin\; of\; error = z_{\frac{0.05 }{2}\sqrt{\frac{{(0.4)}{(1 -0.4)}}{1000}}[/tex]

                             [tex]= z_{0.025}\sqrt{\frac{{(0.4)}{(0.6)}}{1000}}[/tex]

                             [tex]= 1.96\sqrt{\frac{{(0.4)}{(0.6)}}{1000}}[/tex]

                            =  0.03

The margin of error change to [tex]2.5\%[/tex] to [tex]3\%[/tex]

                             

                         

Answer:

Increase due to a higher confidence interval

Step-by-step explanation: