An electron enters a region of space containing a uniform 0.0000193-T magnetic field. Its speed is 121 m/s and it enters perpendicularly to the field. Under these conditions, the electron undergoes circular motion. Find the radius r of the electron\'s path, and the frequency f of the motion.

Respuesta :

Answer

Given,

Magnetic field, B = 0.0000193 T

speed, v = 121 m/s

mass of electron, m = 9.11 x 10⁻³¹ Kg

charge of electron, q = 1.6 x 10⁻¹⁹ C

radius of the electron path, r = ?

[tex]r = \dfrac{mv}{qB}[/tex]

[tex]r = \dfrac{9.31\times 10^{-31}\times 121}{1.6\times 10^{-19}\times 0.0000193}[/tex]

r = 3.64 x 10⁻⁵ m

We know frequency is inverse of time period

d = v t

[tex]2 \pi r = v \times t[/tex]

[tex]t = \dfrac{2 \pi r}{v}[/tex]

[tex]t = \dfrac{2 \pi \times 3.64\times 10^{-5}}{121}[/tex]

t = 1.889 x 10⁻⁶ s.

now, frequency

[tex]f = \dfrac{1}{t}[/tex]

[tex]f = \dfrac{1}{1.889\times 10^{-6}}[/tex]

[tex]f = 529380\ Hz[/tex]