Answer:
[tex]0.333 ft^2[/tex]
Step-by-step explanation:
We are given that
Side of square carpet,s=5 ft
[tex]\Delta s=0.4 in=\frac{0.4}{12}ft[/tex]
1 foot=12 in
We have to find the maximum error in the area of the carpet by using the linear approximation .
Area of square,A=[tex](side)^2=s^2[/tex]
[tex]dA=2sds[/tex]
Substitute the values
[tex]dA=2\times 5\times \frac{0.4}{12}[/tex]
[tex]dA=0.333ft^2[/tex]
Hence, the maximum error in the area of the carpet=[tex]0.333 ft^2[/tex]