The current world-record motorcycle jump is 77.0 m, set by Jason Renie. Assume that he left the take-off ramp at 13.0° to the horizontal and that the take-off and landing heights are the same. Neglecting air drag, determine his take-off speed.

Respuesta :

Answer:

The take-off speed is 41.48 [tex]\frac{m}{s}[/tex]

Explanation:

Given :

Range [tex]R = 77[/tex] m

Projectile angle [tex]\alpha =[/tex] 13°

From the formula of range,

  [tex]R = \frac{v_{o} ^{2} }{g} \sin 2\alpha[/tex]

Find the velocity from above equation,

  [tex]v_{o} = \sqrt{\frac{gR}{\sin 2 \alpha } }[/tex]

  [tex]v_{o} = \sqrt{\frac{9.8 \times 77}{\sin 26} }[/tex]                              ( ∵ [tex]g = 9.8[/tex] [tex]\frac{m}{s^{2} }[/tex] )

  [tex]v_{o} = 41.48[/tex] [tex]\frac{m}{s}[/tex]

Therefore, the take-off speed is 41.48 [tex]\frac{m}{s}[/tex]