Respuesta :

Given:

Tangent segment MN = 6

External segment NQ = 4

Secant segment NP =x + 4

To find:

The length of line segment PQ.

Solution:

Property of tangent and secant segment:

If a secant and a tangent intersect outside a circle, then the product of the secant segment and external segment is equal to the product of the tangent segment.

[tex]\Rightarrow NQ\times NP = MN^2[/tex]

[tex]\Rightarrow 4\times (x+4) = 6^2[/tex]

[tex]\Rightarrow 4x+16 = 36[/tex]

Subtract 16 from both sides.

[tex]\Rightarrow 4x+16-16 = 36-16[/tex]

[tex]\Rightarrow 4x =20[/tex]

Divide by 4 on both sides.

[tex]$\Rightarrow\frac{4x}{4}=\frac{20}{4}[/tex]

[tex]\Rightarrow x = 5[/tex]

The length of line segment PQ is 5 units.

Answer:

PQ=5

Step-by-step explanation:

just took test on edge 2020