Engineers are working on a design for a cylindrical space habitation with a diameter of 4.20 km and length of 32.0 km. The habitation will simulate gravity by rotating along its axis. With what speed (in rad/s) should the habitation rotate so that the acceleration on its inner curved walls equals 4 times Earth's gravity?

Respuesta :

Answer:

0.14 rad/s

Explanation:

We are given that

Diameter=d=4.2 km

Radius,r=[tex]\frac{d}{2}=\frac{4.2}{2}=2.1 km=2.1\times 1000=2100 m[/tex]

Using 1 km=1000  m

Length,l=32 km

Acceleration on  its curved walls=g'=4g

Where [tex]g=9.8m/s^2[/tex]

We have to find the speed (in rad/s)

Centripetal acceleration=[tex]a_c=\omega^2 r[/tex]

[tex]\omega^2\times 2100=4\times 9.8[/tex]

[tex]\omega^2=\frac{4\times 9.8}{2100}[/tex]

[tex]\omega=\sqrt{\frac{4\times 9.8}{2100}}[/tex]

[tex]\omega=0.14rad/s[/tex]