Respuesta :
Answer:
Step-by-step explanation:
The null and the alternative hypothesis are:
H₀=μ₀=μ₁=μ₂=μ₃=μ₄
H₁=two or more μ are different X
Let [tex]X_{ij}[/tex] denote the jth observation of the ith sample. The mean and the variance of the ith sample is given by
[tex]Xbar_{i}[/tex] =[tex]\frac{1}{J_{i}} summation(X_{ij})[/tex] where J=1 to [tex]J_{i}[/tex] and [tex]J_{i}[/tex] is ith sample size
[tex]s_{i} ^{2} =\frac{1}{J_{i}-1 }summation (X_{ij} - Xbar_{i})^{2}[/tex]
The sample sizes are J₁ =12 J₂=10 J₃=18 J₄=9
the total number in all samples combined is 49
finding Xbar₁ and s₁
Xbar₁= 1÷12(17.2+....+13.4)
Xbar₁= 17.0500
s₁²= 1÷(12-1) [(17.0500-17.2)+...+(17.0500-13.4)]
s₁²=5.1336
Similarly find the means and variances of other samples
[tex]\left[\begin{array}{ccc}i&Mean&variance\\1&17.0500&5.1336\\2&15.4500&13.2317\\3&16.4972&6.9460\\4&15.4444&7.4428\end{array}\right][/tex]
the sample grand mean denoted by Xbar is the average of all sampled items taken together:
Xbar=[tex]\frac{1}{49}[/tex] (17.2+.....+16.7)
Xbar=16.2255
Compute the treatment sum of squares SSTr, the sum of squares SSE and the total sum of squares SST
SSTr = ∑ [tex]J_{i} (Xbar_{i} -Xbar)^{2}[/tex] from i=1 to 49
SSTr= 20.9910
[tex]SSE= \sum\limits^I_{i=1}\sum\limits^{J_i}_{j=1}(Xbar_{ij}-Xbar_i)^{2}[/tex]
[tex]SSE=\sum\limits^I_{i=1}(J_i-1)s_i^{2}[/tex]
SSE=(12-1)(5.1336)+...(9-1)(7.4428)
SSE=353.1796
SST=SSTr+SSE
SST=374.1706
Find the treatment mean square MSTr and the error mean square MSE:
MSTr= SSTr/(I-1)
MSTr=6.9970
MSE=SSE/(N-I)
MSE=7.8484
[tex]F=\frac{MSTr}{MSE}[/tex]
F=0.89
The degrees of freedom are I-1=3 for the numerator and N-I=45 for the denominator. Under H₀, F has an [tex]F_{3,45}[/tex] distribution. To find the P value we consult the F table.
P>0.100
The complete ANOVA table is below
[tex]\left[\begin{array}{cccccc}source&DF&SS&MS&F&P\\Agegroup&3&20.9910&6.9970&0.89&0.453\\Error&45&353.1796&7.8484\\Total&48&374.1706\end{array}\right][/tex]
(b) The P-value is large. A follower of 5% rule would not reject H₀. Therefore, we cannot conclude the concentration ratios differ among the age groups