Answer:
Step-by-step explanation:
For each of the yp(x) we can deduce the characteristic polynomial of the differential equation
A.
[tex]yp(x)=Ax^2+Bx+C\\m^2=0\\y''=0[/tex]
B.
[tex]yp(x)=Ae^{2x}\\(m-2)m=0\\m^2-2m=0\\y''-2y=0[/tex]
C.
[tex]yp(x)=Acos2x+Bsin2x\\m_1=2i\\m_2=-2i\\y''+4=0[/tex]
D.
[tex]yp(x)=(Ax+B)cos2x+(Cx+D)sin2x\\yp(x)=xcos4x[/tex]
hope this helps!!