Respuesta :

Answer:

∠CAB = 48.81 degree.

Step-by-step explanation:

Let us consider, ∠CAB = [tex]\alpha[/tex]

From figure,

        [tex]tan \alpha = \frac{BC}{CA} \\tan\alpha = \frac{8}{7} \\ \alpha = tan^{-1} (\frac{8}{7} )\\\alpha = 48.81 degree[/tex]

Answer:

∠ A ≈ 48.81°

Step-by-step explanation:

Using the tangent ratio in the right triangle

tan A = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{8}{7}[/tex] , thus

A = [tex]tan^{-1}[/tex] ( [tex]\frac{8}{7}[/tex] ) ≈ 48.81° ( to the nearest hundredth )