Respuesta :

Answer:

[tex]\frac{x-3}{x+1}[/tex]

Step-by-step explanation:

Given

[tex]\frac{x^2-10x+21}{x^2-6x-7}[/tex] ← factorise numerator/ denominator

x² - 10x + 21 = (x - 7)(x - 3)

x² - 6x - 7 = (x - 7)(x + 1)

The expression can be written as

= [tex]\frac{(x-7)(x-3)}{(x-7)(x+1)}[/tex] ← cancel the common factor (x - 7) on numerator/denominator

= [tex]\frac{x-3}{x+1}[/tex]

Answer:

[tex]\frac{x-3}{x+1} }[/tex]

Step-by-step explanation:

if you factor both of the functions you will get

[tex]\frac{(x-3)(x-7)}{(x-7)(x+1)}[/tex]

the two (x-7) will cancel out and you will b left with

[tex]\frac{\\(x-3)}{(x+1)}[/tex]