Answer:
D. (-2,1)
Step-by-step explanation:
we have
[tex]y=x^2+4x+5[/tex]
This is the equation of a vertical parabola open upward The vertex represent a maximum
Convert the quadratic equation in vertex form
[tex]y=a(x-h)^2+k[/tex]
where
(h,k) is the vertex
Complete the square
[tex]y=(x^2+4x+2^2)+5-2^2[/tex]
[tex]y=(x^2+4x+4)+5-4[/tex]
[tex]y=(x^2+4x+4)+1[/tex]
Rewrite as perfect squares
[tex]y=(x+2)^2+1[/tex]
The vertex is the point (-2,1)