Respuesta :

Answer:

40 marbles.

Step-by-step explanation:

Given:

Box A can hold 10 marbles.

Box B is double the height of Box A, four times the length of Box A, and half the width of box A.

Question asked:

How many marbles can Box B hold?

Solution:

Let volume of box A = [tex]V_{a}[/tex]

Let volume of box B = [tex]V_{b}[/tex]

Now, suppose:

Length of box A = [tex]l[/tex]

Breadth = [tex]b[/tex]

Height = [tex]h[/tex]

So, volume of box A, [tex]V_{a}[/tex] [tex]=lbh[/tex]

As given, Box B is double the height of Box A, four times the length of Box A, and half the width of box A.

So, Length of box B = [tex]4l[/tex]

     Breadth = [tex]\frac{1}{2} b[/tex]

     Height = [tex]2h[/tex]

Volume of box B, [tex]V_{b}[/tex] = [tex]4l\times\frac{1}{2} b\times2h=4lbh[/tex]

By dividing volume of box A with volume of box B:

[tex]\frac{V_{a} }{V_{b}} =\frac{lbh}{4lbh} \\\\ \frac{V_{a} }{V_{b}}=\frac{1}{4} \\\ (lbh \ canceled\ by\ lbh)[/tex]

By cross multiplication:

[tex]V_{b} =4V_{a}[/tex]

That means volume of box B is 4 times volume of box A;

∵ Box A can hold = 10 marbles

∴ Box B ( 4 times of box A ) can hold = [tex]10\times4=40\ marbles[/tex]

Therefore, Box B can hold 40 marbles.