Respuesta :

Given:

Interior angles of a polygon.

7x°, 2x°, 8x°, 60°, 10x°, 8x° and 35°.

To find:

The value of x.

Solution:

Number of sides = 7

Using sum of interior angles of a polygon formula:

[tex]\text{Sum} = (n - 2) \times 180^\circ[/tex]

[tex]7x^\circ + 2x^\circ + 8x^\circ + 60^\circ + 10x^\circ + 8x^\circ + 35^\circ = (n - 2) \times 180^\circ[/tex]

Adding like terms.

[tex]35x^\circ + 95^\circ = (n - 2) \times 180^\circ[/tex]

Substitute n = 7.

[tex]35x^\circ + 95^\circ = (7 - 2) \times 180^\circ[/tex]

[tex]35x^\circ + 95^\circ =5 \times 180^\circ[/tex]

[tex]35x^\circ + 95^\circ =900^\circ[/tex]

Subtract 95° from both sides.

[tex]35x^\circ + 95^\circ -95^\circ=900^\circ-95^\circ[/tex]

[tex]35x^\circ =805^\circ[/tex]

Divide by 35° on both sides.

[tex]$\frac{35x^\circ}{35^\circ} =\frac{805^\circ}{35^\circ}[/tex]

x = 23

The value of x is 23.