Find the energy (in joules) of the photon that is emitted when the electron in a hydrogen atom undergoes a transition from the n = 8 energy level to produce a line in the Paschen series (with principle quantum number of 3).

Respuesta :

Answer:

The energy is [tex]E = 2.08*10^{-19}J[/tex]

Explanation:

           From the question we are told that

              The energy level of the photon is  [tex]n=8[/tex]

Generally the spatial frequency([tex]\frac{1}{\lambda}[/tex]) of this transition  is mathematically represented as

                  [tex]\frac{1}{\lambda } = R * (\frac{1}{n_1} - \frac{1}{n} )[/tex]

Where R is the Rydberg constant  with a value of [tex]1.09 * 10^7m^{-1}[/tex]

            [tex]n_1[/tex] is the principle quantum number for Paschen series with value given a s [tex]n_1 = 3[/tex]

           [tex]\lambda[/tex] is the wavelength of the photon

Now substituting values

               [tex]\frac{1}{\lambda } = 1.097 *10^7 (\frac{1}{3^2} - \frac{1}{8^2} )[/tex]

                   [tex]= 1.047 *10^6m^{-1}[/tex]

Now the energy of this photon is mathematically represented as

                      [tex]E = h * c * \frac{1}{\lambda}[/tex]

where h is the Planck's constant with value  [tex]h = 6.626 *10 ^ {-34} J \cdot sec[/tex]

          c is the speed of light with value [tex]c = 3.0*10^8 m/s[/tex]

Substituting values  

                 [tex]E = 6.626 *10^{-34} * 3*10^8 * 1.047 *10^6[/tex]

                    [tex]= 2.08*10^{-19}J[/tex]