Respuesta :

Part (a)

Step-by-step Explanation:

As ∠K is  a right angle.

i.e.

  • m∠K = 90°

also

  • m∠L = (2x+19)°
  • m∠M = (3x+21)°

Equation to find x

As we know that The angle sum of a Triangle is 180°.

so

m∠K + m∠L + m∠M = 180°

[tex]90\:+\:\left(2x+19\right)\:+\:\left(3x+19\right)\:=\:180[/tex]

[tex]90+2x+19+3x+19=180[/tex]

[tex]5x+90+19+19=180[/tex]

[tex]5x+128=180[/tex]

[tex]5x=52[/tex]

[tex]x=\frac{52}{5}[/tex]

Part (b)

Step-by-step Explanation:

Finding the degree measures of each angle.

As

As ∠K is  a right angle.

so

  • m∠K = 90°

Putting [tex]x=\frac{52}{5}[/tex] in m∠L = (2x+19)°

m∠L = (2x+19)°

         = [tex]2\left(\frac{52}{5}\right)+19[/tex]

         [tex]=\frac{199}{5}[/tex]

         [tex]=39.8[/tex]

so

m∠L = 39.8°

Putting [tex]x=\frac{52}{5}[/tex] in m∠M = (3x+21)°

m∠M = (3x+21)°

         [tex]=3\left(\frac{52}{5}\right)+19[/tex]

          [tex]=\frac{251}{5}[/tex]

          [tex]=50.2[/tex]

so

m∠M = 50.2°

Verification:

m∠K + m∠L + m∠M = 180°

 90°  + 39.8° + 50.2° = 180°

 90° + 90° = 180°          ∵ 39.8° + 50.2° = 90°

 180° = 180°