Answer:
With [tex]A = \left[\begin{array}{cc}1&2\\4&5\end{array}\right][/tex] , we have [tex]S(A) = \left[\begin{array}{cc}0&-1\\1&0\end{array}\right][/tex]
Step-by-step explanation:
Ok, lets apply the transformation S to the 2 by 2 matrix
[tex]A = \left[\begin{array}{cc}1&2\\4&5\end{array}\right][/tex]
The traspose of A is
[tex]A^t = \left[\begin{array}{cc}1&4\\2&5\end{array}\right][/tex]
Thus,
[tex]S(A) = (A - A^t)/ 2 = A/2 - A^t/2 = \left[\begin{array}{cc}1/2&2/2\\4/2&5/2\end{array}\right] - \left[\begin{array}{cc}1/2&4/2\\2/2&5/2\end{array}\right] = \\\left[\begin{array}{cc}0&-1\\1&0\end{array}\right][/tex]