Answer: x = 2, y = 1
Explanation:
solving for x using trial 2 & 3:
[tex]\frac{trial 3}{trial 2} = \frac{45.0}{5.0} =\frac{k[0.030]^{x}[0.020]^{y}}{k[0.010]^{x}[0.020]^{y}} \\9 = \frac{k[0.030]^{x}}{k[0.010]^{x}} \\\\9 = 3^{x}\\x = 2[/tex]
solving for y using trial 1 & 2:
[tex]\frac{trial 2}{trial 1} = \frac{5.0}{2.5} = \frac{k[0.10]^{x} [0.020]^{y}}{k[0.10]^{x}[0.010]^{y}} \\2 = \frac{k[0.020]^{y}}{k[0.010]^{y}} \\\\2 = 2^{y}\\y = 1[/tex]