Calculate the cell potential E at 25°C for the reaction 2 Al(s) + 3 Fe2+(aq) → 2 Al3+(aq) + 3 Fe(s) given that [Fe 2+] = 0.020 M, [Al 3+] = 0.10 M, and the standard reduction potential is -1.66 V for Al 3+/Al and -0.45 V for Fe 2+/Fe.

Respuesta :

Answer:

1.18 V

Explanation:

The given cell is:

[tex]Al(s)/Al^{3+}(0.10M)||Fe^{2+}(0.020M)/Fe(s)[/tex]

Half reactions for the given cell follows:

Oxidation half reaction: [tex]Al(s)\rightarrow Al^{3+}(0.10M)+2e^-;E^o_{Al^{3+}/Al}=-1.66V[/tex]

Reduction half reaction: [tex]Fe^{2+}(0.020M)+2e^-\rightarrow Fe(s);E^o_{Fe^{2+}/Fe}=-0.45V[/tex]

Multiply Oxidation half reaction by 2 and Reduction half reaction by 3

Net reaction: [tex]2Al(s)+3Fe^{2+}(0.020M)\rightarrow 2Al^{3+}(0.10M)+3Fe(s)[/tex]

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=-0.45-(-1.66)=1.21V[/tex]

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Al^{3+}]^2}{[Fe^{2+}]^3}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = ?V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +1.21 V

n = number of electrons exchanged = 6

Putting values in above equation, we get:

[tex]E_{cell}=1.21-\frac{0.059}{6}\times \log(\frac{0.10^2}{0.020^3})\\\\E_{cell}=1.18V[/tex]