Answer:
1.18 V
Explanation:
The given cell is:
[tex]Al(s)/Al^{3+}(0.10M)||Fe^{2+}(0.020M)/Fe(s)[/tex]
Half reactions for the given cell follows:
Oxidation half reaction: [tex]Al(s)\rightarrow Al^{3+}(0.10M)+2e^-;E^o_{Al^{3+}/Al}=-1.66V[/tex]
Reduction half reaction: [tex]Fe^{2+}(0.020M)+2e^-\rightarrow Fe(s);E^o_{Fe^{2+}/Fe}=-0.45V[/tex]
Multiply Oxidation half reaction by 2 and Reduction half reaction by 3
Net reaction: [tex]2Al(s)+3Fe^{2+}(0.020M)\rightarrow 2Al^{3+}(0.10M)+3Fe(s)[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=-0.45-(-1.66)=1.21V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Al^{3+}]^2}{[Fe^{2+}]^3}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = ?V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +1.21 V
n = number of electrons exchanged = 6
Putting values in above equation, we get:
[tex]E_{cell}=1.21-\frac{0.059}{6}\times \log(\frac{0.10^2}{0.020^3})\\\\E_{cell}=1.18V[/tex]