Find the minimum sample size necessary to be 99% confident that the population mean is within 3 units of the sample mean given that the population standard deviation is 29.

Respuesta :

Answer:

The minimum sample size required is 207.

Step-by-step explanation:

The (1 - α) % confidence interval for population mean μ is:

[tex]CI=\bar x\pm z_{\alpha /2}\frac{\sigma}{\sqrt{n}}[/tex]

The margin of error of this confidence interval is:

[tex]MOE=z_{\alpha /2}\frac{\sigma}{\sqrt{n}}[/tex]

Given:

[tex]MOE=3\\\sigma=29\\z_{\alpha /2}=z_{0.01/2}=z_{0.05}=2.576[/tex]

*Use a z-table for the critical value.

Compute the value of n as follows:

[tex]MOE=z_{\alpha /2}\frac{\sigma}{\sqrt{n}}\\3=2.576\times \frac{29}{\sqrt{n}} \\n=[\frac{2.576\times29}{3} ]^{2}\\=206.69\\\approx207[/tex]

Thus, the minimum sample size required is 207.