Answer:
h(n-1) = h(n) - 1.0/n
Explanation:
When
n = 1, h(n) = 1
n = 2, h(n) = 1 + ½
n = 3, h(n) = 1 + ½ +⅓ =
n = 4, h(n) =1 + ½ + ⅓ + ¼
h(n) = 1 + ½ + ⅓ + ... + 1/n
In the expression above.
Subtract h(4) from h(3)
i.e.
h(3) - h(4) = (1 + ½ +⅓)- (1 + ½ + ⅓ + ¼)
h(4-1) - h(4) = (1 + ½ +⅓)- (1 + ½ + ⅓ + ¼)
Let n = 4
h(n-1) - h(n) = (1 + ½ +⅓)- (1 + ½ + ⅓ + 1/n) ---- open the bracket
h(n-1) - h(n) = 1 + ½ +⅓ - 1 - ½ - ⅓ - 1/n
h(n-1) - h(n) = -1/n
h(n-1) = h(n) - 1/n
Assume also that hn is a double variable, then h(n-1) is also a double variable.
So, h(n-1) = h(n) - 1.0/n