The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Starting with 8.00×10−2 mol of N2O5(g) in a volume of 2.9 L, how many moles of reactant are left after 5 minutes? What is its half-life?

Respuesta :

Answer:

0.01034  moles of reactant are left after 5 minutes.

101.63 sec is the half-life.

Explanation:

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t  

[tex][A_0][/tex] is the initial concentration  = [tex]8.00\times 10^{-2}[/tex] mol

k is the rate constant = [tex]6.82\times 10^{-3}[/tex] s⁻¹

Time = 5 minutes = 5*60 seconds = 300 seconds ( 1 min = 60 sec)

Thus,

[tex][A_t]=8.00\times 10^{-2}e^{-6.82\times 10^{-3}\times 300}\ mol=0.01034\ mol[/tex]

0.01034  moles of reactant are left after 5 minutes.

Given that:

k = [tex]6.82\times 10^{-3}[/tex] s⁻¹

The expression for half life is:-

[tex]t_{1/2}=\frac{\ln2}{k}[/tex]

Thus,

[tex]t_{1/2}=\frac{\ln2}{6.82\times 10^{-3}}\ s=101.63\ s[/tex]

101.63 sec is the half-life.