What is the solution to the equation One-fourth x + 2 = negative StartFraction 5 Over 8 EndFraction x minus 5? X = negative 8 x = negative 7 x = 7 x = 8

Respuesta :

Answer:

[tex](A)x= -8[/tex]

Step-by-step explanation:

One-fourth x + 2 = [tex]\frac{1}{4}x+2[/tex]

[tex]\frac{1}{4}x+2=-\frac{5}{8}x-5[/tex]

Next, we Expand the Left hand Side by multiplying each term in the bracket by 1/4

[tex]\frac{1}{4}x+\frac{2}{4}=-\frac{5}{8}x-5[/tex]

Bringing terms with x to the left Hand Side i.e. collecting like terms

[tex]\frac{1}{4}x+\frac{5}{8}x=-5-2\\\\(\frac{1}{4}+\frac{5}{8})x=-7\\\\\frac{7}{8}x=-7[/tex]

On Cross multiplying

7x = -7 X 8

[tex]x=-\dfrac{7*8}{7}\\[/tex]

x=-8

Answer:

negative 8 on edge

Step-by-step explanation: