Answer:
[tex]\theta=209.33\ rad=11993.92^{\circ}[/tex] is the angular displacement in 4 seconds.
[tex]N\approx33.32\ revolutions[/tex]
Explanation:
Given:
time of observation, [tex]t=4\ s[/tex]
angular velocity as a function of time, [tex]\omega=79-5t^2[/tex]
where:
[tex]\omega=[/tex] angular velocity
[tex]t=[/tex] time taken
Now for the angular displacement we integrate the expression of angular velocity:
[tex]\theta=\int^{4}_{0} (79-5t^2)dt[/tex]
[tex]\theta=[79t-\frac{5}{3} t^3]^{4}_{0}[/tex]
[tex]\theta=209.33\ rad=11993.92^{\circ}[/tex] is the angular displacement in 4 seconds.
Now the no. of revolutions made during this time;
[tex]N=\frac{\theta^{\circ}}{360^{\circ}}[/tex]
[tex]N=\frac{11993.92^{\circ}}{360^{\circ}}[/tex]
[tex]N\approx33.32\ revolutions[/tex]