Answer:
The maximum radius that this circle is r=2.685m
Explanation:
The circle on the surface will exit the total reflection occurs
on the point the angle of reflection 90°
The critical angle for air water interface is:
[tex]Sin\alpha =\frac{n_{2} }{n_{1}} \\Sin\alpha =\frac{1.00}{1.33}\\\alpha =Sin^{-1}(\frac{1.00}{1.33})\\\alpha =48.6^{o}[/tex]
The radius of circle on the surface is AO.From geometry
[tex]tan\alpha =\frac{AO}{OS}\\ AO=tan\alpha (OS)\\r=tan(48.6)(2.0)\\r=2.685m[/tex]
The maximum radius that this circle is r=2.685m