Respuesta :

caylus
Hello,
[tex] u_{1}=3 [/tex]
[tex] u_{2}=3*(-4) [/tex]
[tex] u_{3}=3*(-4)^2 [/tex]

[tex] u_{n}=3*(-4)^{n-1} [/tex]


Answer: [tex]a_n=3(-4)^{n-1}[/tex]

Step-by-step explanation:

Given sequence : [tex]3, -12, 48, -192, ...[/tex]

Here, First term [tex]a_1=3[/tex]

Second term [tex]a_2=-12[/tex]

and  Ratio=[tex]r=\frac{a_2}{a_1}=\frac{-12}{3}=-4[/tex]

Third term [tex]a_3=48[/tex]

Ratio=[tex]r=\frac{a_3}{a_2}=\frac{48}{-12}=-4[/tex]

Fourth term [tex]a_4=-192[/tex]

Ratio=[tex]r=\frac{a_4}{a_3}=\frac{-192}{48}=-4[/tex]

Thus, the given sequence is geometric sequence with the common ratio r = -4.

The explicit rule for for the nth term in geometric sequence is given by

[tex]a_n=a_{1}r^{n-1}[/tex]

Then the explicit rule for the nth term of the given sequence will be :-

[tex]a_n=3(-4)^{n-1}[/tex]