Respuesta :

Answer:

[tex]-24n^{2} +31[/tex]

Step-by-step explanation:

Given: [tex]7-3[(n^{3} +8n)\div (-n)+9n^{2} ][/tex]

Now simplifying expression using PEDMAS

First solving for small parenthesis.

taking common of n

= [tex]7-3[n(n^{2} +8)\div (-n)+9n^{2} ][/tex]

using law of indices, [tex]\frac{x^{m} }{x^{n} } = x^{m-n}[/tex]

= [tex]7-3[-(n^{2} +8)+9n^{2} ][/tex]

Opening parenthesis

= [tex]7-3[-n^{2} -8+9n^{2} ][/tex]

= [tex]7-3[ -8+8n^{2} ][/tex]

Again using distributive property of multiplication

= [tex]7+24-24n^{2}[/tex]

= [tex]-24n^{2} +31[/tex]

Hence, the answer is [tex]-24n^{2} +31[/tex]