Answer:
[tex]-24n^{2} +31[/tex]
Step-by-step explanation:
Given: [tex]7-3[(n^{3} +8n)\div (-n)+9n^{2} ][/tex]
Now simplifying expression using PEDMAS
First solving for small parenthesis.
taking common of n
= [tex]7-3[n(n^{2} +8)\div (-n)+9n^{2} ][/tex]
using law of indices, [tex]\frac{x^{m} }{x^{n} } = x^{m-n}[/tex]
= [tex]7-3[-(n^{2} +8)+9n^{2} ][/tex]
Opening parenthesis
= [tex]7-3[-n^{2} -8+9n^{2} ][/tex]
= [tex]7-3[ -8+8n^{2} ][/tex]
Again using distributive property of multiplication
= [tex]7+24-24n^{2}[/tex]
= [tex]-24n^{2} +31[/tex]
Hence, the answer is [tex]-24n^{2} +31[/tex]