Suppose an ice skater is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of 2.34 kg ⋅ m2 with her arms extended and of 0.363 kg ⋅ m2 with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Respuesta :

Answer:

a) w₂ = 5.16 rev / s , b)    K₀ = 29.55 J,   K₂ = 190.88 J

Explanation:

The skater forms an isolated system whereby its angular momentum is preserved

Initial. With outstretched arms

          L₀ = I₀ w₀

Final. With arms stuck

          L₂ = I₂W₂

          L₀ = L₂

         I₀ w₀ = I₂ w₂

         w₂ = I₀ / I₂ w₀

Let's calculate

         w₂ = 0.800 2.34 / 0.363

         w₂ = 5.16 rev / s

b) The kinetic energy is

          K = ½ I w²

Let's reduce to the SI system

           w₀ = 0.800 rev / s (2π rad / 1 rev) = 5.026 rad / s

           w₂ = 5.16 rev / s (2π rad / 1 rev) = 32.42 rad / s

The initial kinetic energy

            K₀ = ½ I₀ w₀²

            K₀ = ½ 2.34 5,026²

            K₀ = 29.55 J

The final kinetic energy

            K₂ = ½ I₂ w₂²

            K₂ = ½ 0.363 32.42²

            K₂ = 190.88 J

Answer:

[tex]a) \:5.16\:\:rev/s[/tex]

[tex]b)\:29.6\:\:J,\:\:191\:\:J[/tex]

Explanation:

a) We will apply conservation of momentum,

[tex]L = L'\\I\omega=I'\omega'[/tex]

[tex]\omega'=\frac{I}{I'}\omega=\frac{2.34}{0.363}=0.800=5.16\:\:rev/s[/tex]

b) We will use rotational kinetic energy,

Initial value of kinteric energy will be as follows:

[tex]KE_{rot}=\frac{1}{2}I\omega^2\\KE_{rot}=0.5*2.34*(0.800*2\pi)^2=29.6 \:\:J[/tex]

Final value of kinteric energy will be as follows:

[tex]KE_{rot}\:'=\frac{1}{2}I'\omega'^2\\KE_{rot}\:'=0.5*0.363*(5.16*2\pi)^2=191 \:\:J[/tex]