Determine the true anomaly q of the point(s) on an elliptical orbit at which the speed equals the speed of a circular orbit with the same radius, that is, vellipse 1⁄4 vcircle. {Ans.: q 1⁄4 cos1(e), where e is the eccentricity of the ellipse}

Respuesta :

Answer:

The true anomaly q will be such that the q=[tex]cos^{-1}(e)[/tex] where e is the eccentricity of the ellipse.

Explanation:

For ellipse velocity components  and velocity is given as

[tex]v_r=\frac{\mu}{h} e \, sin\theta\\v_p=\frac{h}{r}=\frac{h}{\frac{h^2}{\mu}\frac{1}{1+ecos\theta}}\\v_{eclipse}=\sqrt{v_r^2 +v_p^2}\\v_{eclipse}=\sqrt{(\frac{\mu}{h} e \, sin\theta)^2 +(\frac{h}{\frac{h^2}{\mu}\frac{1}{1+ecos\theta}})^2}\\\\v_{eclipse}=\sqrt{(\frac{\mu}{h})^2(e^2+1+2ecos\theta)}\\\\v_{eclipse}^2=(\frac{\mu}{h})^2(e^2+1+2ecos\theta)[/tex]

For similar radius velocity of circle is given as

[tex]\\v_{circle}^2=\frac{\mu}{r}\\v_{circle}^2=\frac{\mu}{\frac{h^2}{\mu}\frac{1}{1+ecos\theta}}\\v_{circle}^2=\frac{\mu^2}{h^2}(1+ecos\theta)[/tex]

Now as per the condition

[tex]v_{eclipse}^2=v_{circle}^2\\(\frac{\mu}{h})^2(e^2+1+2ecos\theta)=\frac{\mu^2}{h^2}(1+ecos\theta)\\(e^2+1+2ecos\theta)=(1+ecos\theta)\\ecos\theta=-e^2\\cos\theta=-e\\theta=cos^{-1}(e)[/tex]

So the true anomaly q will be such that the q=[tex]cos^{-1}(e)[/tex] where e is the eccentricity of the ellipse.