Respuesta :

Answer:

80°

Step-by-step explanation:

We have redrawn the figure with nomenclature.

Given,

∠C = 45°

∠D = 55°

We have to find the value of x.

Solution,

In ΔCDE

[tex]\angle C = 45\°\\\\ \angle D = 55\°[/tex]

Now according to angle sum property;

Sum of all the angles of a triangle is equal to 180°.

framing in equation form, we get;

[tex]\angle C+\angle D+\angle E =180\°[/tex]

On substituting the given values, we get;

[tex]45+55+y=180\°\\\\100+y=180\°\\\\y=180\°-100\°\\\\y =80\°[/tex]

Now In Δ AEB and Δ CED

[tex]m \angle AEB =m\angle CED[/tex] ⇒ (Vertically opposite angles.)

Now [tex]m\angle CED = y\°= 80\°[/tex]

So [tex]m\angle AEB =x\°= 80\°[/tex]

Hence [tex]x =80\°[/tex].

Ver imagen jitumahi76