Step-by-step explanation:
Let x ounces of 11% alcohol must be mixed with the 2 ounces of 20% alcohol.
The amount of alcohol in 4 ounces solution is= [tex]\frac{20}{100} \times 4[/tex] ounces
= 0.8 ounces
The amount of alcohol in x ounces solution is= [tex]\frac{11}{100} \times x[/tex] ounces
= 0.11 x ounces
Total amount of alcohol is = (4+x) ounces
According to the problem,
[tex]\frac{0.8+0.11x}{4+x}= \frac{17}{100}[/tex]
[tex]\Leftrightarrow 100(0.8+0.11x)=17(4+x)[/tex]
[tex]\Leftrightarrow 80+11x=68+17 x[/tex]
[tex]\Leftrightarrow 6x= 12[/tex]
[tex]\Leftrightarrow x= 2[/tex]