Respuesta :
Answer: magnitude = 169.66N/C
direction = 8.6859°
Explanation:
Given from the question, we have that;
the Length of line of charge L = 0.808 m
Linear charge density λ = 3.35 × 10⁻⁶ C/m
charge q = -7.32 × 10⁻⁷ C
Coulombs force constant K = 1/(4π ε0) = 8.99 × 10⁹ N·m²/C².
NB. The picture uploaded gives a diagrammatic description of the problem.
From Pythagoras theorem we have,
tan Θ = 3.75 / (10.7-1.56)
Θ = 22.3076 °
recall that the Electric field at point P due to the finite wire is;
È = Kλ (L / b(L+b)) Î .............. (1)
where È rep the electric field.
from equation 1, we have that
È = 8.99 × 10⁹
where È rep the electric field.
from equation 1, we have that
È = 8.99 × 10⁹ × 3.35 × 10⁻⁶ (0.808/ 10.7(10.7 – 0.808))
È = 0.229905 × 10³ N/C Î
recall also that the Electric field at point -P due to -q is;
È = (8.99 × 10⁹ × 7.32 × 10⁻⁷) / ((3.75)² + (10.75-1.56)²) = 0.6742 × 10² N/C
where E = -E₁cosθÎ + E₁sinθĴ
E = - 0.62446 ×10²Î + 0.2562 ×10²Ĵ
The Resultant Electric charge Er is given as;
Er = 1.6771 ×10²Î + 0.2562 ×10²
Er = [√(1.6771)² + (0.2562)² ] × 10² = 169.66 N/C
∴ Magnitude = 169.66 N/C
Having gotten the magnitude, let us find the direction;
⇒ Direction = tan Ф = 0.25621/1.6771 = 8.6859°
Direction = 8.6859°
cheers i hope this helps

In this exercise we have to use the knowledge of electric charges and calculate the magnitude and direction of this electric force, as
magnitude = 169.66N/C
direction = 8.6859°
Given from the question, we have that;
- Length of line of charge L = 0.808 m
- Linear charge density λ = 3.35 × 10⁻⁶ C/m
- Q = -7.32 × 10⁻⁷ C
- Coulombs force K= 8.99 × 10⁹ N·m²/C².
So with the information given earlier, we can use the Pythagorean theorem and calculate the magnitude like this:
[tex]tan \phi = 3.75 / (10.7 -1.56) = 22.3076\\E = 8.99 * 10^9 * 3.35 * 10^{-6} (0.808/ 10.7(10.7 - 0.808))\\E = 0.229905 *10^3 \\E = (8.99 * 10^9 * 7.32 * 10^{-7}) / ((3.75)^2 + (10.75-1.56)^2) = 0.6742 * 10^2\\E = - 0.62446 *10^2 + 0.2562 *10^2\\E = 169.66 N/C[/tex]
Now that we have the magnitude of the force we can calculate the direction of this force as:
[tex]Direction = tan \phi = 0.25621/1.6771 = 8.6859[/tex]
See more about eletric charges at brainly.com/question/14438235