Respuesta :
Complete question:
Natural gas at 70 â°F and standard atmospheric pressure of 14.7 psi (abs) is compressed isentropically to a new absolute pressure of 70 psi. Â Determine the final density and temperature of the gas.
Answer:
The final density of the natural gas is 0.004243 slugs/ftÂł and
The final temperature of the natural gas is 306.6 â°F
Explanation:
For Ideal gas: P = ĎRT
R Â is ideal gas constant = Â 3.099 x 10Âł Â ft lb / slugâ°R
Tâ is initial temperature = 70 â°F = (70+460)â°R = 530â°R
Pâ is intial pressure of the gas = 14.7 psi = (14.7 lb/in² X 144 in²/ft²) = 2116.8 lb/ft²
From the ideal gas equation, we calculate initial density of the natural gas:
Ďâ = P/RT â 2116.8/(3.099 x 10Âł X 530) = 0.001289 slugs/ftÂł
For isentropic process:
[tex]\frac{P}{\rho^K} = Constant[/tex]
where  K  is the ratio of specific heats for natural gas; K  =  1.31, Therefore
[tex]\frac{P_1}{\rho_1^{K}} = \frac{P_2}{\rho_2^{K}} ,\rho_2^K = (\frac{P_2}{P_1})\rho_1^K , \rho_2 = (\frac{P_2}{P_1})^\frac{1}{K} \rho_1[/tex]
[tex]\rho_2 = (\frac{70}{14.7})^\frac{1}{1.31} (0.001289) = (4.7619)^{0.76336}(0.001289) =[/tex] 0.004243 slugs/ftÂł
Final density; Ďâ = 4.243 X10âťÂł slugs/ftÂł
From ideal gas equation; P = ĎRT
Pâ = ĎâRTâ
Tâ = Pâ/ĎâR
Pâ (lb/ft²) =  (70 lb/in²)( 144 in²/ft²) = 10080 lb/ft²
Tâ = 10080/(0.004243 X 3099)
Tâ = 766.6â°R
Final Temperature; Tâ = (766.6-460)â°F = 306.6â°F