Respuesta :

Answer:

Option D) is correct

That is the rational exponent expression is not simplified correctly is

[tex]x^{\frac{7}{4}=\sqrt[7]{x^4}[/tex]

Step-by-step explanation:

Given rational exponent expression is [tex]x^{\frac{7}{4}=\sqrt[7]{x^4}[/tex]

To prove that LHS=RHS

First taking LHS

[tex]x^{\frac{7}{4}[/tex]

[tex]=(x^7)^{\frac{1}{4}}[/tex]

[tex]=\sqrt[4]{x^7}[/tex]

Therefore [tex]x^{\frac{7}{4}=\sqrt[4]{x^7}\neq RHS[/tex]

But we have [tex]x^{\frac{7}{4}=\sqrt[7]{x^4}[/tex]

Therefore [tex]LHS\neq RHS[/tex]

The corrected simplified expression [tex]x^{\frac{7}{4}=\sqrt[4]{x^7}[/tex]

Therefore Option D) is correct

Therefore the rational exponent expression which is not simplified correctly is

[tex]x^{\frac{7}{4}=\sqrt[7]{x^4}[/tex]

Answer:

4. [tex]x^{(\frac{7}{4})} = \sqrt[7]{x^4}[/tex]

Step-by-step explanation:

Here, consider the each expression and simplify it:

1.[tex]x^{\frac{1}{8} }\times x^{\frac{1}{8}[/tex]

Now, if the BASE IS SAME when multiplied, THE POWERS ARE ADDED.

[tex]x^{\frac{1}{8} }\times x^{\frac{1}{8}} = x^{(\frac{1}{8} + \frac{1}{8})}\\= x^{(\frac{1}{4})} =\sqrt[4]{x} \\\implies x^{\frac{1}{8} }\times x^{\frac{1}{8}} = \sqrt[4]{x}[/tex]

Hence, given statement if TRUE.

2. [tex]\frac{x^{\frac{2}{5} }}{x^{\frac{1}{5} }}[/tex]

Now, if the BASE IS SAME when divided, THE POWERS ARE SUBTRACTED.

[tex]\frac{x^{\frac{2}{5} }}{x^{\frac{1}{5} }} = x^{(\frac{2}{5} ) -(\frac{1}{5} )} = x^ {(\frac{1}{5})} = \sqrt[5]{x} \\\implies \frac{x^{\frac{2}{5} }}{x^{\frac{1}{5} }} = \sqrt[5]{x}[/tex]

Hence, given statement if TRUE.

3. [tex]x^{(\frac{7}{9})[/tex]

Now,a s we know : [tex]x^{(\frac{1}{a}) } = \sqrt[a]{x}[/tex]

So, solving given expression:  [tex]x^{(\frac{7}{9})} = \sqrt[9]{x^7}[/tex]

Hence, given statement if TRUE.

4. [tex]x^{(\frac{7}{4})[/tex]

Now,a s we know : [tex]x^{(\frac{1}{a}) } = \sqrt[a]{x}[/tex]

So, solving given expression:  [tex]x^{(\frac{7}{4})} = \sqrt[4]{x^7} \neq \sqrt[7]{x^4}[/tex]

Hence, given statement if FALSE.