Respuesta :

Answer:

0.135M/s

Explanation:

We are given that

Initial rate of reaction=0.0300M/s

We have to find the initial rate if [A] is halved and [B] is tripled.

Initial rate,[tex]Rate=k[A][B]^2[/tex]=0.0300M/s

[tex][A]'=\frac{1}{2}[A][/tex]

[tex][B]'=3[B][/tex]

New, initial rate=[tex]k[A]'[B]'^2[/tex]

Substitute the values then we get

New, initial rate,Rate=[tex]k\times \frac{1}{2}[A]\times (3[B])^2[/tex]

New, initial rate

Rate=[tex]4.5k[A][B][/tex]

New initial rate=[tex]4.5\times 0.0300=0.135M/s[/tex]

Hence, the initial rate will be 0.135M/s when [A] is halved and [B] is tripled.

Answer:

The initial rate is 0.135 m/s.

Explanation:

Given that,

Rate = 0.0300 m/s

[tex][A]=\dfrac{[A]}{2}[/tex]

[tex][B]=3[B][/tex]

Suppose, The rate is,

[tex]\text{rate}=k[A][B]^2[/tex]

We need to calculate the initial rate

Using formula of rate

[tex]rate=k[A][B]^2[/tex]

Put the value A and B

[tex]rate=k\times\dfrac{[A]}{2}[3B]^2[/tex]

[tex]rate=k\times\dfrac{[A]}{2}[9B^2][/tex]

[tex]rate=4.5k[A][B]^2[/tex]

[tex]rate =4.5\times0.0300[/tex]

[tex]rate=0.135\ m/s[/tex]

Hence, The initial rate is 0.135 m/s.