contestada

A convex hexagon has interior angles with measures x^0, (5x - 103); (2x + 60), (7x - 31), (6x -6), and (9x - 100), what is the value of x?

Respuesta :

Answer:

x = 30.66°

Step-by-step explanation:

The sum of the interior angles of a hexagon is 720°

Each angles are x^0, (5x - 103); (2x + 60), (7x - 31), (6x -6), and (9x - 100),

we add all these angles together

x^0 + (5x - 103) + (2x + 60) + (7x - 31) + (6x -6) + (9x - 100) = 720

x^0  = 1

1 + (5x - 103) + (2x + 60) + (7x - 31) + (6x -6) + (9x - 100)

1 + 5x - 103 +2x + 60 + 7x -31 + 6x - 6 + 9x - 100 = 720

1 - 103 + 60 - 31 - 6 - 100 + 5x + 2x + 7x + 6x + 9x = 720

1 - 180 + 29x = 720

-179 + 29x = 720

29x = 720 + 179 = 889

x = 889/29 = 30.655 ≅ 30.66°