Respuesta :

[tex]f(x)=x^2-(2+\sqrt 3)x+2\sqrt3[/tex]

Solution:

Given zeros are [tex]2,\sqrt 3[/tex].

If a is zero of f(x), then (x – a) is a factor of f(x).

So, [tex](x-2)[/tex] and [tex](x-\sqrt 3)[/tex] are factors of f(x).

On multiplying factors, we get the polynomial function.

[tex](x-2)(x-\sqrt 3)=x^2-2x-\sqrt 3x+2\sqrt3[/tex]

Combine like terms together.

[tex](x-2)(x-\sqrt 3)=x^2-(2+\sqrt 3)x+2\sqrt3[/tex]

Degree of the polynomial is 2.

A leading coefficient is 1.

Hence the polynomial [tex]f(x)=x^2-(2+\sqrt 3)x+2\sqrt3[/tex].