Respuesta :
Answer:
a) [tex]v_1=5.5172\ m.s^{-1}[/tex]
b) [tex]v_2=-1.5152\ m.s^{-1}[/tex]
c) [tex]v_3=4.6154\ m.s^{-1}[/tex]
d) [tex]v_{avg}=3.8462\ m.s^{-1}[/tex]
Explanation:
Given:
- distance down the field in the first interval, [tex]d_1=16\ m[/tex]
- time duration of the first interval, [tex]t_1=2.9\ s[/tex]
- distance down the field in the second interval, [tex]d_2=-2.5\ m[/tex]
- time duration of the second interval, [tex]t_2=1.65\ s[/tex]
- distance down the field in the third interval, [tex]d_3=24\ m[/tex]
- time duration of the third interval, [tex]t_3=5.2\ s[/tex]
a)
velocity in the first interval:
[tex]v_1=\frac{d_1}{t_1}[/tex]
[tex]v_1=\frac{16}{2.9}[/tex]
[tex]v_1=5.5172\ m.s^{-1}[/tex]
b)
velocity in the second interval:
[tex]v_2=\frac{d_2}{t_2}[/tex]
[tex]v_2=\frac{-2.5}{1.65}[/tex]
[tex]v_2=-1.5152\ m.s^{-1}[/tex]
c)
velocity in the third interval:
[tex]v_3=\frac{d_3}{t_3}[/tex]
[tex]v_3=\frac{24}{5.2}[/tex]
[tex]v_3=4.6154\ m.s^{-1}[/tex]
d)
We know that the average velocity is given as the total displacement per unit time.
[tex]v_{avg}=\frac{d_1+d_2+d_3}{t_1+t_2+t_3}[/tex]
[tex]v_{avg}=\frac{16-2.5+24}{2.9+1.65+5.2}[/tex]
[tex]v_{avg}=3.8462\ m.s^{-1}[/tex]