Respuesta :

[tex]\cos (5 \pi) \sin (8 \pi)=\frac{1}{2}[\sin 13 \pi+\sin (3 \pi)][/tex] is the answer.

Explanation:

To write the product [tex]\cos (5 \pi) \sin (8 \pi)[/tex] as the sum using product-sum identities.

The product-sum identity for [tex]cos A sinB[/tex] is given by

[tex]\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)][/tex]

Now, we shall substitute the value for A and B in this formula.

Thus, [tex]A=5 \pi[/tex] and [tex]B=8 \pi[/tex], we have,

[tex]\cos (5 \pi) \sin (8 \pi)=\frac{1}{2}[\sin (5 \pi+8 \pi)+\sin (5 \pi-8 \pi)][/tex]

Adding the terms within the bracket,

[tex]\cos (5 \pi) \sin (8 \pi)=\frac{1}{2}[\sin 13 \pi-\sin (-3 \pi)][/tex]

Since, we know that [tex]\sin (-x)=-\sin (x)[/tex], we have,

[tex]\cos (5 \pi) \sin (8 \pi)=\frac{1}{2}[\sin 13 \pi+\sin (3 \pi)][/tex]

Thus, the solution is [tex]\cos (5 \pi) \sin (8 \pi)=\frac{1}{2}[\sin 13 \pi+\sin (3 \pi)][/tex]