Answer:
T=9.4 N
Explanation:
We are given that
Mass of wire,m=16.5 g=[tex]\frac{16.5}{1000}[/tex]kg
1 kg=1000g
Length of wire,l=75 cm=[tex]75\times 10^{-2}[/tex]m
1 m=100 cm
Wavelength of transverse wave=[tex]\lambda=3.33 cm=3.33\times 10^{-2}[/tex]m
Frequency=[tex]621 Hz[/tex]
Mass per unit length=[tex]m_l=\frac{m}{l}=\frac{16.5}{1000\times 75\times 10^{-2}}=0.022 kg/m[/tex]
[tex]\nu=\frac{v}{\lambda}[/tex]
[tex]v=\nu \lambda[/tex]
Where[tex]\nu=[/tex]frequency of wave
[tex]\lambda[/tex]=Wavelength of wave
Speed of wave=v
Using the formula
[tex]v=3.33\times 10^{-2}\times 621=20.7m/s[/tex]
[tex]v=\sqrt{\frac{T}{m_l}}[/tex]
[tex]v^2=\frac{T}{m_l}[/tex]
[tex]T=v^2m_l[/tex]
Using the formula
[tex]T=(20.7)^2\times 0.022=9.4N[/tex]
Hence, the tension,T=9.4 N