Answer:
[tex]\bar X = \frac{52384 +54079 +52762 +54364 +52584+53987 +53108 +51588 +50554 +53987}{10}=52939.7[/tex]
[tex] Mode= 53987[/tex]
[tex] Median = \frac{52762+53108}{2}=52935[/tex]
[tex] Midrange=\frac{50554+54364}{2}=52459[/tex]
Step-by-step explanation:
We can calculate the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And if we replace the values given we got:
[tex]\bar X = \frac{52384 +54079 +52762 +54364 +52584+53987 +53108 +51588 +50554 +53987}{10}=52939.7[/tex]
The mode is the most repeated value and for this case with a frequency of 2 the mode is:
[tex] Mode= 53987[/tex]
In order to find the median we need to order the dataset on increasing way like this:
50554, 51588, 52384 ,52584, 52762
53108, 53987 , 53987 , 54079, 54364
Since we have 10 values an even number the median is calculated from the average between positions 5 and 6 on the data ordered, and we got:
[tex] Median = \frac{52762+53108}{2}=52935[/tex]
The mid range is defined like this:
[tex] Midrange = \frac{Max +Min}{2}[/tex]
And if we replace we got:
[tex] Midrange=\frac{50554+54364}{2}=52459[/tex]