Answer:
number of photon will be equal to [tex]5.827\times 10^{15}photon[/tex]
Explanation:
We have given wavelength of nitrogen laser pulse is 337 nm
So wavelength [tex]\lambda =337nm=337\times 10^{-9}m[/tex]
Velocity of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}Js[/tex]
So energy of each photon [tex]E=\frac{hc}{\lambda }=\frac{6.6\times 10^{-34}\times 3\times 10^8}{337\times 10^{-9}}=5.8\times 10^{-19}J[/tex]
Total energy is given = 3.38 mJ = 0.00338 J
So number of photon will be equal to [tex]=\frac{0.00338}{5.8\times 10^{-19}}=5.827\times 10^{15}photon[/tex]
So number of photon will be equal to [tex]5.827\times 10^{15}photon[/tex]